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REPRESENTATION THEORY OF THE SYMMETRIC GROUP

SUMMARY

Polynomials are an age-old subject. Defined in terms of a base ring and finitely many
indeterminates, polynomials are obtained by using only a finite number of additions
and multiplications of the elements of the base ring and the indeterminates.

Symmetry is a fundamental concept of mathematics. At the heart of symmetry
one wants to understand what remains invariant under a group action. Symmetric
polynomials are the polynomials which are invariant under the permutation action of
the symmetric group.

Catalan numbers is a sequence of positive integers which enumerate seemingly
unrelated combinatorial objects.

This thesis is devoted to two subjects. First is the verification of an algorithm
to calculate the expansion coefficients of a product of a Jack polynomial J, and
a power-sum symmetric polynomial p, in the Jack polynomial basis for various
partitions u and integers n. The second is a new bijection between two sets of objects
enumerated by Catalan numbers, solving an earlier conjecture in the paper "From
Parking Functions to Gelfand Pairs" by K. Aker and M. B. Can in 2012.

Symmetric polynomials appear naturally in mathematics. For instance, the coefficients
of a polynomial are symmetric polynomials of the roots of the given polynomials.
These symmetric polynomials are called elementary symmetric polynomials, e,.
Summing up all monomials of a fixed total degree produces complete symmetric
polynomials, 4,. Summing up the n-th power of indeterminates produces the
power-sum symmetric polynomials, p,. Symmetrizing monomials produces monomial
symmetric polynomials, m;, , where A is any partition. In fact, the monomial symmetric
polynomials form a basis of the ring of symmetric polynomials. By extending
the definitions of elementary, complete and power-sum symmetric polynomials
appropriately, each of theses sets of polynomials constitute a basis for the symmetric
polynomials.

In addition to these four bases, Schur polynomials, originally defined as the quotient of
two determinants, form a fifth basis. Schur polynomials happen to be the most coveted
basis among these five classical basis of symmetric polynomials. In representation
theory, they correspond to the irreducible characters of the symmetric group. It
is possible to study representation theory of symmetric groups by studying Schur
polynomials.

When dealing with symmetric polynomials, it is best to work with infinitely many
indeterminates to avoid accidental identities and to clarify the underlying structure.
In terms of modern algebra, a symmetric function is an element of the symmetric
function ring and the symmetric function ring is defined as the projective limit of rings
of symmetric polynomials as the number of indeterminates tend to infinity.
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Alternatively, a symmetric function can be thought of as a symmetric polynomial with
finitely many indeterminates where the number of indeterminates can change. From
this point of view, the crucial bit is that any identity involving symmetric functions
must be valid as the number of indeterminates changes.

The product in the polynomials is so easy — the product of two monomials is again a
monomial, add up the corresponding exponents — that we hardly think about it twice.

How about the product in the ring of symmetric functions? What are the structure
constants for the ring of symmetric functions? This turns out to be either rather
straightforward to be interesting as in the case of polynomials, or rather hard. For
elementary, complete, power-sum symmetric functions, the answer is straightforward
akin to the product of two monomials. The structure constants for the product of the
two monomial symmetric functions is only obtained in 2001 in "A MAPLE program
for calculations with Schur functions" by M.J. Carvalho, S. D’ Agostino.

The structure constants for the product of two Schur functions is calculated by the
Littlewood-Richardson rule in the paper "Group Characters and Algebra" by D. E.
Littlewood and A. R. Richardson. First stated by D. E. Littlewood and A. R.
Richardson in 1934, it took 4 decades for complete proofs to show up.

How about multiplying elements in different basis? How about multiplying Schur
functions with other basis elements expanding in the Schur basis again?

The product of a Schur function with a complete symmetric function is calculated
by the Pieri rule. The product of a Schur function with the power-sum symmetric
functions is calculated by the Murnaghan-Nakayama rule and it calculates the values
of the irreducible characters of the symmetric group.

Various other symmetric functions arose in mathematics in the twentieth century, such
as Hall polynomials, zonal polynomials, Jack polynomials, Macdonald polynomials
etc. They arose as the invariant polynomials for action of some group. For instance,
zonal polynomials were first introduced in relation to orthogonal groups.

These functions can be seen as extensions of Schur functions. Schur functions, when
expanded in terms of monomial functions, have triangular matrices. The set of Schur
functions is orthonormal. When a normalization is imposed, Schur functions are
uniquely defined by these properties. The above functions, albeit defined typically over
a different base ring, can be characterized similarly. This is the approach followed in
Macdonald’s book.

In this thesis, our first consideration is to study the product of Jack polynomials with
power-sum symmetric polynomials in terms of Jack polynomials. We search how to
calculate the coefficients of this product and compute these coefficients step by step.
Firstly, we prove that the product of an arbitrary Jack polynomial with a power sum
symmetric function p; in the basis of Jack polynomials. Secondly, we prove that this
product for the power sum symmetric function p;. Then we find the formulas of the
product of an arbitrary Jack polynomial with a power sum symmetric function for some
cases. Thus the formula of the product J, p, for any partition (i is generalized partially.

Catalan numbers pop up in all parts of mathematics. They enumerate a variety
of different mathematical objects which seem unrelated at first impression. In the
second problem, we prove a conjecture about the equality of two generating functions
described in the paper "From Parking Functions to Gelfand Pairs" by K. Aker and M.
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B. Can in 2012 attached to two sets whose cardinalities are given by Catalan numbers:
We establish a new combinatorial bijection between the two sets which proves the
equality of the corresponding generating functions.
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SIMETRIK GRUPLARIN TEMSIL TEORISI

OZET

Polinomlar matematigin en eski konularindandir. Bir temel halkaya ve sonlu
sayida degiskene gore tanimlanan polinomlar, bu degiskenlerin ve temel halkanin
elemanlarinin sonlu sayida toplamlar1 ve ¢arpimlari kullanilarak elde edilir.

Simetri matematigin temel kavramlarindandir. Simetrinin odak noktasi bir grup etkisi
altinda degismeden kalan yapilar1 anlamaktir. Simetrik grup, polinom halkas1 {izerinde
degiskenler iizerinde permiitasyonlarla etki eder. Simetrik grubun permiitasyon etkisi
altinda degismeyen polinomlaria simetrik polinomlar denir. iki simetrik polinomun
toplam1 ve carpimui yine simetrik polinom oldugu i¢in, simetrik polinomlar polinom
halkasinin bir alt-halkasini olusturur.

Catalan say1ilar1 matematikte bir¢ok alanda karsimiza ¢ikan bir pozitif sayilar dizisidir.
Catalan sayilari, ilk bakista birbirleriyle ilgili olmayan pek ¢ok kombinatorik kiimeyi
sayar.

Bu tez calismasi iki konuya ayrilmustir. Ik konu, herhangi bir u pargalanisi
ve n tamsayisi i¢in herhangi bir Jack polinomu J, ile n-ninci kuvvet toplami
simetrik fonksiyonu p, carpiminin yine Jack polinomlarina gore acilmasindan gelen
genisletilmis katsayilar1 hesaplayan algoritmanin saglanmasi iizerinedir. ikinci konuda
ise K. Aker ve M. B. Can’1in 2012 yilinda yayinlanan makalelerinde yer alan bir iddia
ispatlanmistir. Bu iddia eleman sayilar1 Catalan sayilari olan iki kiime arasinda birebir
ve Orten yeni bir eslemenin varli81 tizerinedir.

Simetrik polinomlar matematikte hemen her yerde karsimiza cikar. Ornegin, bir
polinomun katsayilari, polinomun koklerine gore simetrik polinomlardir. Bu simetrik
polinomlara temel simetrik polinomlar denir; e, ile gosterilir. Derecesi ayni olan
biitiin tek terimlilerinin toplami 4, ile gosterilen tam simetrik polinomlart iiretir.
n-ninci kuvvetten degiskenlerin toplamlari, p,, ile gosterilen kuvvet toplami simetrik
polinomlar iiretir. Simetrik hale getirilmis tek terimliler, A herhangi bir parcalanig
olmak lizere m, ile gosterilen tek terimli simetrik polinomlar: iiretir. Tek terimli
simetrik polinomlar m, simetrik fonksiyonlar halkasinin bir bazidir. Temel, tam ve
kuvvet toplam1 simetrik polinomlariin tanimlarinin uygun olarak genisletilmesi ile
bu polinomlar da simetrik polinomlarin birer bazin1 olustururlar.

Bu dort baza ilave olarak Schur polinomlar1 aslen iki determinantin boliimii olarak
tanimlanan simetrik fonksiyonlar halkasinin besinci bazini olusturur.

Simetrik fonksiyonlar uzayimnin dogrusal yapisi ile ilgili sorular bu 6nemli bazlarin
kombinatorik olarak insaasinin temel noktalaridir. Diger bir odak noktast bu bazlarin
olusturdugu matrislerin degisimidir yani bu bazlar arasindaki gecis matrislerini tarif
etmektir. Baz matrislerinin degisimi kombinatorigin dogas1 geregi zengin bilgiler
icermektedir.
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Simetrik polinomlar ile ugrasirken rastgele Ozdesliklerden kacinmak ve yapiyi
aciklamak i¢in sonsuz sayida belirsizler ile ¢alismak daha uygundur. Modern cebir
diliyle simetrik fonksiyon, simetrik fonksiyon halkasinin bir elemanidir. Simetrik
fonksiyon halkasi ise belirsizlerinin sayisi sonsuza giden simetrik polinom halkalarinin
projektif limiti olarak tanimlanir.

Alternatif olarak simetrik fonksiyon, belirsizlerinin sayisinin degisebildigi yerde sonlu
sayida belirsizlere sahip olan simetrik polinom olarak diisiiniilebilir. Bu agidan
bakildiginda 6nemli olan, simetrik fonksiyonlar arasindaki herhangi bir 6zdesligin
belirsizlerin sayis1 degistikce de gecerli olmasidir.

Polinomlarin ¢arpimi olduk¢a kolaydir; iki tek terimlinin carpimi yine bir tek
terimlidir, karsilik gelen kuvvetlerin toplanmasi ile bulunur.

Simetrik fonksiyonlar halkasindaki ¢arpim nasil olmalidir? Simetrik fonksiyonlar
halkasi i¢in yap1 sabitleri nelerdir? Bu problemin ¢oziimii ya ilgi ¢ekici olmayacak
kadar basit ya da hayli zordur. Temel simetrik fonksiyonlar, tam simetrik fonksiyonlar,
kuvvet toplami simetrik fonksiyonlar: icin iki tek terimlinin carpimi benzer sekilde
aciktir.

Tek terimli simetrik polinomlar i¢in yap1 sabitleri, 2001 yilinda M.J. Carvalho ve S.
D’ Agostino tarafinda ¢oziilmiistiir.

Schur polinomlarinin ¢arpimi, Littlewood-Richardson kurali, D. E. Littlewood ve A.
R. Richardson tarafindan 1934 yilinda formiile edildi. Hatasiz ispatlarin ortaya ¢ikmasi
40 y1l ald1.

Farkli tabanlardaki elemanlarin ¢arpimi nasil olmalidir? Schur fonksiyonlarinin diger
baz elemanlar1 ile carpiminin yine Schur tabaninda nasil agilir?

Schur fonksiyonunun tam simetrik fonksiyon ile carpilmasi Pieri kurali ile
hesaplanir. Schur fonksiyonunun kuvvet toplami simetrik fonksiyonu ile ¢arpilmasi
Murnaghan-Nakayama kurali ile hesaplanir. Bu kural aslinda simetrik grubun
indirgenemez karakterlerinin degerlerini hesaplar.

Yirminci ylizyi1lda matematikte Hall polinomlari, Zonal polinomlar, Jack polinomlari,
Macdonald polinomlar1 gibi ¢esitli bagka simetrik fonksiyonlar ortaya ¢ikti. Bunlar
bazi gruplarin etkisine gore degismez polinomlar olarak ortaya ciktilar. Ornegin,
ilk olarak Zonal polinomlar ortogonal gruplar ile ilgili ortaya c¢ikan ortogonal
fonksiyonlardir.

Macdonald polinomlart gibi, simetrik foksiyonlar Schur fonksiyonlarinin
geniglemeleri olarak goriilebilirler. Schur fonksiyonlari, tek terimli fonksiyonlara
gore acildiginda ticgensel matrislere sahiptirler. Schur fonksiyonlar1 birbirine gore
ortonormaldir.  Bir normalizasyon segilince, bu o6zellikler Schur fonksiyonlarini
timiiyle belirler. Yukarida bahsi gecen Macdonald polinomlar1 gibi fonksiyonlar,
simetrik fonksiyon halkasinin taban halkasimin ve simetrik fonksiyonlar tizerindeki
ic carpimin genigletilmesi suretiyle tanimlanabilirler. 1. G. Macdonald’in kitabinda
izlenen yaklagim budur.

Simetrik fonksiyon halkasi icerisindeki ¢arpimlara geri donersek, Schur fonksiyon-
larinin tam simetrik fonksiyonlar, birbirleri ve kuvvet toplami simetrik fonksiyonlari
ile carpimlari kisaca soyledir:
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n pozitif bir tamsay1 olmak {izere, Pieri kurali; n nin herhangi bir y parcalanigi i¢in
keyfi bir Schur fonksiyonu ile n-ninci tam simetrik fonksiyonun ¢carpiminin yine Schur
fonksiyonlar1 cinsinden tarif edilmesidir. Yada bagka bir deyisle; Schur fonksiyonlari
icin Pieri kurali; n ninci tam simetrik fonksiyon, (n) par¢alanigli Schur fonksiyonuna
esit oldugundan, birbirleri cinsinden yazilabildiginden, » nin herhangi bir u pargalanisi
icin keyfi bir Schur fonksiyonu ile (n) parcalanigli Schur fonksiyonunun ¢arpiminin
yine Schur fonksiyonlar1 cinsinden ifade edilmesidir.

Littlewood-Richardson kurali; n nin herhangi iki farkli parcalanisi i¢in keyfi iki Schur
fonksiyonun ¢arpiminin yine Schur fonksiyonlar1 cinsinden yazilmasidir.

Murnaghan-Nakayama kurali; n nin herhangi bir parcalanisi icin keyfi bir Schur
fonksiyonu ile n-ninci kuvvet toplami simetrik fonksiyonunun c¢arpiminin Schur
fonksiyonlar1 cinsinden tarifidir ki bu yapr bize simetrik gruplarin indirgenemez
karakterlerinin degerlerinin hesab1 i¢in rekiirsif bir islem tanimlar.

Bu carpimlardan yola ¢ikarak calistigimiz ilk problemimiz, simetrik fonksiyonlar
uzaymin diger bir Onemli bazi olan Jack simetrik fonksiyonlart igin
Murnaghan-Nakayama kuralimi arastirmaktir.  Yani n pozitif bir tamsayr olmak
tizere n nin herhangi bir pargalanisi i¢in keyfi bir Jack simetrik fonksiyonu ile n-ninci
kuvvet toplam1 simetrik fonksiyonunun ¢arpimi, Jack simetrik fonksiyonlari cinsinden
ifade edildiginde katsayilarin nasil hesaplanacagi ve ispatin nasil yapilacagi sorusu ile
ilgilidir.

Jack simetrik fonksiyonlari ilk olarak istatistik¢i Henry Jack tarafindan 1969 yilinda
tanimlandi.  Jack simetrik polinomlari, taban halkasinin bir o« parametresi ve
simetrik polinomlar iizerindeki i¢ carpimin uygun bir sekilde genisletilmesiyle, Schur
fonksiyonlarina benzer sekilde tanimlanir. Jack, o = 1 durumunda bu polinomlarin,
Schur fonksiyonlarina indirgenecegini gosterdi. Ayrica o = 2 durumunda yine Jack
fonksiyonlarinin zonal polinomlar1 verdigi ¢ikariminda bulundu. 1974 yilinda H.
O. Foulkes, Jack simetrik fonksiyonlarinin kombinatoryel yorumu ile ilgili sorular
ile ilgilendi. 1987 yilinda I. G. Macdonald ise Jack fonksiyonlarmin ozelliklerini,
baglangi¢ noktasini 1977 yilinda Sekiguchi’nin ¢alistig1 diferansiyel operatorleri alarak
arastirdi, bir dizi onemli esitliklerin varligin1 gosterdi. 1989 yilinda ise R. P. Stanley bu
konuyu oldukga gelistirdi: Jack simetrik fonksiyonlar i¢in Pieri kuralimi olusturdu ve
ispatladi. Stanley, ek olarak, Jack simetrik fonksiyonlari i¢in Littlewood-Richardson
kurali hakkinda birtakim ¢ikarimlarda bulundu.

Ik problemimizde ncelikle R. P. Stanley’in buldugu Jack simetrik fonksiyonlar igin
Pieri kurali ve n-ninci Jack simetrik fonksiyonlar ile n-ninci kuvvet toplami simetrik
fonksiyonlar1 arasindaki iligki géz 6niinde bulundurulmugtur. Ayrica 2004 yilinda R.
Sakamoto, J. Shiraishi, D. Arnaudon, L. Frappat ve E. Ragoucy’nin yazmis oldugu bir
makalede bulunan herhangi bir Jack simetrik fonksiyonu ile n-ninci kuvvet toplami
simetrik fonksiyonlari carpiminin algoritmasi iizerinde ¢aligilmistir. Bu algoritmay1
kullanarak adim adim herhangi bir Jack simetrik fonksiyonu ile n-ninci kuvvet toplami
simetrik fonksiyonlar1 carpimi, Jack simetrik fonksiyonlari cinsinden ifade edildiginde
katsayilarin neler oldugu, nasil hesaplanacagi arastirilmistir. Ayrica adim adim bu
carpimlarin ispatlari, Jack simetrik fonksiyonlar1 i¢in Pieri kurali ve Jack simetrik
fonksiyonlarin 6zellikleri kullanilarak arastirilmistir.

Ikinci problemimizde ozellikle kombinatorik matematikte ¢ok onemli bir yeri olan
1838 yilinda Eugene Charles Catalan tarafindan bulunan Catalan sayilar {izerinde
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calistlmugtir. Ozel bir pozitif say1 dizisi olan Catalan sayilarinin n-ninci terimi n > 0
icin C,, = ﬁ (2:) formiilii ile bulunur. Bu problemde, K. Aker ve M. B. Can’in 2012
yilinda basilmig olan makalelerinde bulunan bir iddia ispatlanmistir. Bu iddia, eleman
sayilar1 Catalan sayilar1 olan iki kiimenin tireten fonksiyonlarinin esitligi hakkindadir.
Bu iddianin ispati, iireten fonksiyonlar esitligi, iki kiime arasindaki birebir ve orten

kombinatoryel bir esleme kurularak yapilmistir.
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1. INTRODUCTION

Algebraic combinatorics studies the ring of symmetric functions A and other

combinatorially constructed algebras. The fundamental questions in this field are:

* What is the linear structure of the ring of symmetric functions?

1. Can one construct combinatorially significant linear basis of the symmetric
function ring A? The answer is affirmative. There are many well-known
combinatorial basis of the symmetric function ring A, e.g. monomial
functions, complete symmetric functions, power sum symmetric functions,
Schur functions, Jack symmetric functions, Macdonald polynomials etc. Jack
symmetric functions and Macdonald polynomials are generalizations of Schur

symmetric functions with parameters.

2. How are different basis related to each other? That is, what are the change
of basis matrices? The entries of the matrices correspond to enumeration of

certain sets.

* What is the nonlinear structure of the ring of symmetric functions A?

3. How do two basis elements (possibly from different basis) multiply? Some
famous product formulas are Littlewood-Richardson rule which calculates the
product of two Schur functions (Section 1.3.8), Pieri rule which calculates
the product of a Schur function with a complete symmetric function (Section
1.3.9) and Murnaghan-Nakayama rule which calculates the product of a Schur
function with a power sum symmetric function in terms of Schur functions

(Section 1.3.11).

1.1 Purpose of Thesis

In this thesis, we study two problems: The first is to find a Murnaghan-Nakayama

type formula for the product of a Jack symmetric function and a power sum symmetric

1



function. The second is to construct a new bijective proof for the celebrated Catalan

numbers.

In the first problem, we study the product of an arbitrary Jack polynomial with an n-th
power sum symmetric function in the basis of Jack polynomials. We understand how

to calculate the coefficients of this product and compute these coefficients step by step.

The fundamental definitions and theorems which we would use would be given in
Chapter 1. Basic definitions and theorems in Sections 1.3.1, 1.3.4 and 1.3.11, 1.3.12,
1.3.13 and 1.3.14 are taken verbatim from [1], [2], [3] and [4] respectively.

In Chapter 2, using the Pieri rule for Jack symmetric functions in Theorem 59 and
Algorithm 61 in Section 1.3.14, we prove that the product of an arbitrary Jack
polynomial with a power sum symmetric function p; in the basis of Jack polynomials
in Theorem 62. Then the product of an arbitrary Jack polynomial with a power sum
symmetric function p, in terms of Jack polynomials in Theorem 64 is proved. We
study the coefficients of Jack polynomials obtained by the product of a Jack polynomial

with a power sum symmetric function p; and p».

We find some formulas for the product J;, p,, in some cases and hence some formula of

for product J, p, is generalized partially in Chapter 3.

In Chapter 4, our second problem related to the Catalan numbers is studied. This
chapter is devoted my joint paper “A New Combinatorial Identity for Catalan
Numbers” with Kursat Aker to appear in Ars Combinatoria. The rest of the chapter
is essentially a verbatim copy of the said paper. We show the existence of a bijection
between two sets whose cardinality is a Catalan number. Also, we prove that two
generating functions derived from different incarnations of Catalan Numbers coincide.
The generating function Zq(Z) appears in [5] as the dimension counting generating
function for the parking function module. In [5], the authors conjecture that this
generating function coincides with another generating function Zq(};). We prove this

conjecture by combinatorial arguments.

1.2 Literature Review

Jack’s symmetric functions were first defined by the statistician Henry Jack in 1969 [6],

[7]. He showed that when & = 1 they reduce to the Schur functions, and conjectured
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that when o = 2 they should give the zonal polynomials. Later, H. O. Foulkes [8] raised
the question of finding a combinatorial interpretation of Jack’s symmetric functions.
He began to investigate their properties, taking the differential operators of Sekiguchi
[9] (see Chapter V1.3, Example 3) as a starting point, and showed in particular [10]
that they satisfy (10.13),(10.14),and (10.17) in [3] (duality). Shortly afterwards R.
P. Stanley [4] advanced the subject further, and established the scalar product formula
(10.16) in [3], the Pieri formula, the explicit expression as a sum over tableaux, and
the specialization Theorem (10.20) in [3]. Stanley worked with the Jack symmetric

function J )‘f‘ rather than Pf‘.

Sakamoto et al. [11] study the action of the Virasoro operators L, on the Fock space.
They give an algorithm to calculate the matrices of a Virasoro operators with respect

to Jack basis.

The Catalan numbers form a sequence of nonnegative numbers that appear in various
counting problems in combinatorics. Catalan numbers are called after the Belgian
mathematician Eugene Charles Catalan (1814-1894). R. P. Stanley has listed over
seventy existences of Catalan numbers in his book [1] and seventy more in his web site

Catalan Addendum [12].

1.3 Background

Partitions (Definition 1) enumerate many combinatorial objects as well as different
basis of symmetric functions. To clarify how the symmetric functions basis are
enumerated by partitions, first think of, the ring of polynomials (possibly in infinite
number of indeterminates). In contrast, a basis of ring of polynomials will be
enumerated by finite sequences of nonnegative integers. Each orbit of finite sequences
of nonnegative integers under the action of symmetric group contains a unique
partition. This is why symmetric function basis are enumerated by partitions. The

graphical depiction of a partition is called a Young diagram (Definition 4).

Young diagrams enrich the representations of partitions by transforming 1-dimensional
partitions into 2-dimensional objects. Young diagrams further can be enriched by
allowing boxes to be filled with nonnegative integers with certain restrictions. The

resulting objects are called Young Tableaux (Definition 10).



We introduce matrix representations (Definition 18) and group characters of symmetric
groups (Definition 23) to present the application of Murnaghan-Nakayama rule

(Theorem 47) to calculate irreducible symmetric group characters (Theorem 48).

Following Stanley, we first introduce monomial symmetric functions m, (Definition
31), then we introduce the symmetric function ring A spanned by monomial symmetric

functions.

For positive integer n, the symmetric group S, acts on the polynomial ring
Q[x1,x2,---,X,] by permuting the indices. The ring of symmetric polynomials A, is
the ring of invariants Q[x;,x2,...,x,]%. The symmetric polynomial rings A, form a
projective system, where A, 1 — A, is a projection defined by x; — x; fori=1,...,n
and x;, 41 — 0. The symmetric function ring A is the projective limit of the symmetric

polynomials rings A,,.

We introduce the other fundamental basis for the symmetric function ring A, namely
the power sum symmetric functions p;, the elementary symmetric functions e; and

the complete symmetric functions /4, .

Another cornerstone of the theory of symmetric functions is the inner product on the
symmetric function ring A. It suffices to define an inner product on any basis. The
inner product on the ring of symmetric functions is defined so that the power sum

symmetric functions are orthogonal. For partitions A and u, set

(Pa, Pu) = Opp2a-

Here, z) = [1;> i™.m;! where m; = m;(4) is the number of parts of A equal to i.

In Section 1.3.7, we introduce Schur functions in terms of Young Tableaux (Section

1.3.2) and touch upon their most important properties.

Schur basis can be simply characterized as an orthonormal basis, which is triangular

with respect to the monomial basis, plus a normalization condition.

After this brief review of the linear structure of the symmetric function ring A, we
finally discuss some well-known product formulas. Littlewood-Richardson rule for
the product of two Schur functions (Section 1.3.8) and its special case, Pieri rule for

the product of a Schur function and a complete symmetric function (Section 1.3.9).



In Section 1.3.11, we introduce the Murnaghan-Nakayama rule which calculates the
product of an arbitrary Schur function s, with a power sum symmetric function p,
expanding the product in Schur functions (Theorem 47). A direct application of this
theorem would give us irreducible character values for symmetric groups (Theorem

48).

Schur functions can be extended in many directions. Two extensions within the realm
of symmetric functions are Macdonald polynomials and Jack polynomials. These
extensions require extending the base field by parameters ¢, in the case of Macdonald

polynomials and by a parameter « in the case of Jack polynomials.

To define Macdonald and Jack polynomials, one deforms the inner product (-, -)
properly. Recall that Schur basis can defined as the orthonormal, triangular basis with
respect to the monomial basis. Using this characterization as a guide, Macdonald
and Jack polynomials can be defined as the unique orthonormal basis, triangular
with respect to the monomial basis which satisfy a normalization condition for the

corresponding inner product.

Macdonald polynomials specialize to Jack polynomials under a certain limit and Jack

polynomials specialize to Schur functions by setting o to 1.

In Section 1.3.12, we touch up on the Macdonald polynomials. Later in Sec. 1.3.13,
we describe the fundamental properties of Jack polynomials as will be needed in
this thesis, followed by Stanley’s theorem for a Pieri rule for Jack polynomials and

Sakamoto’s Algorithm (Section 1.3.14).

1.3.1 Partitions

Definition 1. A partition A of a nonnegative integer n is a sequence (A1, ..., Ax) € N
satisfying A; > ... > A and Y A; = n. Any A; = 0 is considered irrelevant, and we
identify A with the infinite sequence (A1,...,A4,0,0,...). We let Par(n) denote the set
of all partitions of n, with Par(0) consisting of the empty partition @ (or the sequence
(0,0,...)), and we let

Par := U Par(n).

n>0



Example 2. Let the partition 3221 as short for (3,2,2,1,0,...). Then we write

() = {1}
Par(2) = {2,11}
3) = {321,111}
(4) = {4,31,22,211,1111}.

Definition 3. If A € Par(n), we also write A - n or | A |= n. The number of parts of A

(i.e., the number of nonzero 4;) is the length of A, denoted ¢(1).

Definition 4. Suppose A = (41,43,...,4,) = n. The Young diagram (also called a
Ferrers diagram) of a partition A is an array of n dots with r left-justified rows in

which row i contains A; dots for 1 <i <r.

The dot in row i and column j has coordinates (i, j), as in a matrix. Boxes (also called

cells) are often used in place of dots.

Example 5. The Young diagram (Ferrers diagram) of the partition A = (5,3,2,2,1) is

or

This is the English notation. The French notation uses the Cartesian coordinate system

with the usual origin and the x and y directions:

or

We will use the English notation. A partition A and its shape will be identified

throughout this work.

Let A and u be two partitions. Then we write g C A if y; < A; forall i > 1.

When g C A, the diagram obtained by removing the cells of p from the cells of A is

called a skew diagram and is denoted by A /.



Example 6. The Young diagram for the skew shape (8,6,5,4,3,1)/(4,4,3,2,1) is

L]

Definition 7. The franspose of a partition A, denoted by A’, is the reflection of the

Young diagram of A with respect to the main diagonal, i = j.
Example 8. The transpose of the partition (8,4,2,2,1) is (5,4,2,2,1,1,1,1):

[ TT

For fixed n, define a total ordering on Par(n), called lexicographic ordering: For A,y €

Par(n), then A <y, u if there exists a positive integer r such that

1. Ai=u; fori<rand
2. A < Uy
There is also a commonly used partial ordering on the set of partitions, called

dominance order, and denoted by <p, or just <. For A,u € Par(n), then A <p u

if for all positive integers r, the following holds:
r r
Y u<Y w
i=1 i=1
It is easy to see that the lexicographic order refines the dominance order. We also have
the following standard fact, the proof of which can be found in [11].

Proposition 9. Transposition reverses dominance order. That is, A <p W if and only

ifu' <pa'.



1.3.2 Tableaux

Definition 10. A Young tableau T is obtained by filling the integers 1,2,...,n in the n

boxes of the Young diagram of A.

The underlying partition of a Young tableau 7 is called the shape of the Young tableau
T which we denote by sh(T).

Definition 11. A Young tableau T of shape A is standard if each rows and each

columns are strictly increasing sequences.

Example 12. The tableau

W
o

ﬂ
Il
N
|9,

is standard, whereas

W
N

~
I
‘O\M»—
\9]

18 not.

Definition 13. A Young tableau T of shape A is semi-standard if each row weakly

increases and each column strictly increases.

Example 14.

ﬂ
1
‘mwt\)
ESNIE\S]

1s semi-standard, but the tableau

Vﬂ
Il
(] aw

1S not.

A Young tableau T has type @ = (a, 0, ....) where a; = o;(T') is the multiplicity 7 in

tableau 7. For any Young tableau 7" of type «, let

X = [

i>1



Example 15. Let

1
T=[3
6]

As is seen, 7T 1s a semi-standard tableau with

1. |T|=6,
2. sh(T) = (3,2,1),
3. a=(1,2,1,0,1,1,0,0,...),

4. xT = xlx%x3x5x6.

The symmetric group S, acts on tableaux by permuting the entries: For 7 € §,, acts on

a tableau T = (T'(i, j)) of shape A - n by

nT = (n(T (i, j)))-

1/3]

Example 16. If 7 = (1,2,3) and T = 3 , then
13]_[2]1]
(1’2’3)£ SEs

1.3.3 Compositions

Definition 17. A composition of a nonnegative integer n is a vector of positive integers
o= (a,0,...,04) such that Y/ | o; = n. We write @ |=n to denote « is a composition
of n. The integer r is called the length of & and denoted by /(). Similarly, the integer
n is called the size of a and is denoted by |a|. The integers o; are called the parts of

. We write Comp(n) for the set of compositions of n.

1.3.4 Matrix Representations

Groups are abstract objects. It would be convenient if we could always put them in
some standard, equivalent form. Forming a matrix representation of an abstract group
can be thought of as a process of transforming the abstract group into a concrete group

of matrices.

Let Mat, stand for the set of all d X d matrices with entries in the complex numbers

C. The vector space Mat, is called the full complex matrix algebra of degree d.

9



Recall that an algebra is a vector space with an associative multiplication
of vectors (hence also imposing a ring structure on the space). The
complex general linear group of degree d, denoted by GL;, is the group of all

invertible matrices p = (x; j)axq € Maty.
Definition 18. A matrix representation of a group G is a group homomorphism
p:G— GL,.

Equivalently, to each g € G is assigned p(g) € Mat, such that

1. p(e) =1 the identity matrix, and

2. p(gh)=p(g)p(h)forall g,h € G.

The parameter d is called the degree, or dimension, of the representation and is denoted
by degp.
Evidently the simplest representations are those of degree 1.

Example 19. All groups have the trivial representation, which assigns the elements

matrix (1) to all g € G. This is clearly a representation because p(e) = (1) and

p(g)p(h) = (1)(1) = (1) = p(gh)
for all g,h € G. We often use 15 or simply 1 to denote the trivial representation of G.

Example 20. For the symmetric group S, the sign of a permutation, denoted sgn(7)
for w € §,,, defines a 1-dimensional representation. The resulting representation is

called the sign representation.

Example 21. Also of importance is the defining representation of S,, which is of

degree n. For w € S, let p(7) = (Xi j)nxn, Where

L ita() =i
"1 0, otherwise

The resulting matrices p(7) are called the permutation matrices.

10



Example 22. For the symmetric group on 3-letters, here are the resulting permutation

matrices. The permutations are written in cycle notation:

100 010
pe)=( 01 0 [, p((1,2))=| 1 0 0O [,
00 1 00 1
00 1 100
p((13)=[0 1 0], p((23)=( 00 1 |,
100 010
00 1 010
p((1,2,3))=| 1 0 0 ], p((1,3,2))=( 0 O 1 |.
010 100

1.3.5 Group Characters

Definition 23. Let p : G — GL; be a matrix representation. Then the character of p is

xP(g) =Trp(g),

where Tr denotes the trace of a matrix and the character is usually denoted with the

Greek letter y. Otherwise put, ¥ is the map
xP: G .

Definition 24. Let V be a vector space and G be a group. Then V is a G-module if

there is a group homomorphism
p:G— GL(V).

Equivalently, V is a G-module if there is a multiplication, gv, of elements of V by

elements of G such that

1. gvev,

2. glev+dw) =c(gv)+d(gw),

3. (gh)v=2g(hv),

4. ev=v

forall g,h € G; v, w € V; and scalars c,d € C.

11



If V is a G-module, then its character is the character of a matrix representation p

corresponding to V.

Note that if X is any set with a multiplication by elements of G satisfying (1), (3) and

(4), then we say G acts on X.

Since there are many matrix representations corresponding to a single G-module, we

should check that the module character is well-defined.

Definition 25. Let V and W be G-modules. Then a G-homomorphism (or simply a

homomorphism) is a linear transformation 0 : V. — W such that

0(gv) =g6(v)
for all g € G and v € V. We also say that 8 preserves or respects the action of G.

Definition 26. Let V and W be modules for a group G. A G-isomorphism is a
G-homomorphism 6 : V — W that is bijective. In this case we say that V and W

are G-isomorphic, or G-equivalent, written V= W.

If p and ¢ both correspond to V, then ¢ = ApA~! for some fixed A. Hence, for all
g€,
Tro(g) =TrA p(g)A~" =Trp(g),

since trace is invariant under conjugation. Hence p and ¢ have the same character.

For a given group G and a degree 1 representation, the character of the representation

and the representation itself can be identified. Therefore,

Example 27. The character corresponding to a degree 1 representation is called a

linear character.

Example 28. Consider the defining representation of S,, with its character y9. If n =
3, then we can compute the character values by direct calculation using the permutation

matrices in Example 22:

x(e) =3, x*N((1,2)=1, x*((1,3)=1,

Xdef(<273)) =1, %def((17273)> =0, xdef((13372)) =0.

12



In general, if © € §,,, then

x%(m) = the number of ones on the diagonal of p ()

= the number of fixed points of 7.

Proposition 29. Let p be a matrix representation of a group G of degree d with its

character xP.

1. xP(e)=d.
2. If H is a conjugacy class of G, then

gheH = xP(g)=xP(h).
3. If ¢ is a representation of G with character y, then

pP=o=xP(g)=v"(g)

forall g € G.

1.3.6 The Ring of Symmetric Functions

Let x = {x1,x2,x3,...} be an infinite set of variables and consider the formal power

series ring Q[[x]]. A monomial xﬁ‘xﬁz...xi”

is said to have degree ¥; A;.
For every positive integer n, the symmetric group S, acts on the power series ring Q]|[x]]
naturally, for 7 € S, and f(x) € Q[[x]], define the action by
Tf(x1,x2,%3,...) = f(Xz1,X12, %13, -+ )5
where i =i for i > n.
One can produce symmetric functions by symmetrizing a given monomial.

Definition 30. [1] Let x = (xj,x2,...) be a set of indeterminates, and let n € N.
A homogeneous symmetric function of degree n over a commutative ring R (with

identity) is a formal power series
flx)= Z cox®,
[0

where (a) o ranges over all weak compositions & = (@, &, ...) of n (of infinite length),
(b) cq € R, (c) x* stands for the monomial x{"x32..., and (d) f (Xo(1)5 Xn(2)5 -+) =
f(x1,x2,...) for every permutation w of the positive integers P.
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Definition 31. Let A = (41, 4;, ..., A,) be a partition. The monomial symmetric function

corresponding to A is

M A A
my = mp, (x) = Y XX

)

where the sum is over all distinct monomials with exponents A;, A5, ..., A,.

Example 32. If A = (2, 1) then the monomial symmetric function corresponding to A
is
meo 1) = x%xz —I—xlx% +x%x3 +x1x% +x%x3 —l—xyc% +...

Obviously, if A - n, then m (x) is homogeneous of degree n.

Definition 33. The ring of symmetric functions is
A=A(x) =Qmy,

that is, the vector space spanned by all the m; .

The ring of symmetric functions A is in fact a graded algebra with respect to degree:
A=EPA".
n>0

Here, the graded piece A" is the vector space spanned by all m of degree n.

Since the m are independent,

Proposition 34. Monomial symmetric functions my, A b n form a basis of the

homogeneous symmetric functions for the space A".

Its dimension equals the number of partitions of n.

Definition 35. The nth power sum symmetric function is
Pn=my =Y X
i>1
The nth elementary symmetric function is
e, — m(ln) = Z Xip o Xiy -
1<...<iy
The nth complete homogeneous symmetric function is

hn: Zm/l: Z Xip e Xiy, -

Abn i1<...<iy

14



For a given partition A, define the power sum symmetric function p; as

ra=[1ra
1

The elementary symmetric function e, and the complete symmetric function /4, for an

arbitrary partition A are defined analogously.

Example 36. If » = 3 then we have

p3 = x?—f—x%—kx%—k...,
€3 = X1X2X3 +X1X2X4 +X1X3X4 + X2X3X4 + ...,

hy = x? +x% + ... +x%x2 +x1x% 4 o X1 X0X3 + X1 X0X4 + ...

Theorem 37. The following are bases for A".

1. {py:AFEn}.
2. {ey : A Fn}.
3. {hlﬂ,l—l’l}

Example 38. If L = (2,1) then we obtain

Pl = P2P1 = (x%“f’x%‘f—x%—f— )+ Fxs ),
epn) = exer = (X1x2+x1x3 +x1x4 +x2%3 + ... ) (X1 +x2 +x3 + ..,
h(2,1) = hhh = (x%+x%+x%+...+x1xz +x1x3 +X1X4 +x0x3 + ) (X Fx +x3 4.0,

Denote the multiplicity of the part i in the partition A by m;(A). Let z; = [1;> ™ .m;!

where m; = m;(1).

Define the inner product (-, -) on the symmetric function ring A as follows:

Definition 39. For partitions A and u, set
(Pas Pu) = Brp2a-

As power sum symmetric functions form a basis of the ring of symmetric functions,

by linear extension, this definition determines the inner product completely.
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1.3.7 Schur Functions

Schur functions s, constitute a basis for the ring of symmetric functions, A”. As we
will see, they are also intimately connected with the irreducible representations of the
symmetric groups S, and the Young tableaux. In fact, there are several ways to define

Schur functions. We follow a combinatorial approach.
Definition 40. Let A be a partition. The associated Schur function is
T
s(x) =Y x",
T
where the sum is over all semi-standard A -tableaux T'.

Example 41. If A = (2, 1), then some of the possible tableaux are

po L] [1]2] [1]1] [1]3] 1)2] [1]3] [1]2] |[1]4]
'2 72 73 73 ) ] 3 72 74 ’2 )

SO

S(2,1) (x) = x%xz —|—x1x% +x%x3 +x1x% + o 2xx0x3 + 2x1X0X4 + .

Note that if A = (n), then one-rowed tableau is just a weakly increasing sequence of n

positive integers, that is, a partition with n parts so

If A consists of a single column, i.e. A = (1"), then the entries must increase from top

to bottom, so the partition must have distinct parts and hence

s (x) = Z Xiy .. Xi, = ep(X).

<...<iy

Proposition 42. The function s (x) is symmetric.

Definition 43. For a given partition A and a composition u, the number of
semi-standard Young tableaux of shape A and type u is called the Kostka number

Ky

Recall that u <p A is the dominance order on the set of partitions.
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Proposition 44. The change of basis matrix from monomial symmetric functions to
Schur functions is triangular with trivial diagonal: For a given partition A, the Schur

function

sa=), Kyumy, (1.1)
u<pi

where the sum is over partitions [L. Here,

07 .ufD;L
K’l“:{ I, A=u.

Notice that although the Kostka number K} , requires a partition A and composition

U, in the above theorem u denotes a partition.

Schur functions are triangular with respect to monomial symmetric functions:

Definition 45. When basis elements b; of the symmetric function ring A satisfies
equations akin to 1.1, we will say that the basis b, is triangular with respect to

monomial symmetric functions.
Schur functions constitute the unique basis b, so that

1. The basis b, is orthonormal with respect to the inner product (-,-): That is,

(by, bu) = Gy
2. The basis b, is triangular with respect monomial symmetric functions.
3. The coefficient of m) in the expansion of b, equals 1.

Corollary 46. The Schur functions s) ,A - n form a orthonomal basis for A".

1.3.8 Littlewood-Richardson Rule

The multiplicative structure of the ring A is determined by Littlewood-Richardson

formula: For partitions A4, i,

1%
SAS# - ch‘uSv,
1%

where the sum runs over partitions v and the structure constants c} , count the number
of semi-standard skew tableau of shape v/A and weight p. The structure constants

c){ y are called the Littlewood-Richardson coefficients.
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1.3.9 Pieri Rule

A special case of the Littlewood-Richardson rule is the Pieri rule, which calculates the
product of the Schur function s, and the complete symmetric function 4,. Recall that

h,, 1s the Schur function S(n)- Then, for any partition A, the Pieri rule states that

sahn =) _sv,
v

where the sum runs of over all partitions v so that v/A is a horizontal n-strip. A

skew-shape is a horizontal strip if each column contains at most one box.

1.3.10 Dual Pieri Rule

Dual Pieri rule computes the product of a Schur function s; with an elementary
symmetric function e,. Recall that e, is the Schur function S(1n)- The dual Pieri rule

states that

Sken = st,
\%

where the sum runs over all partitions A C v such that v/A is a vertical n-strip. A

skew-diagram is a vertical strip if each row contains at most one box.

1.3.11 Murnaghan-Nakayama Rule

Given a partition A and a nonnegative integer n, Murnaghan-Nakayama rule calculates

the product of a Schur function s; and a power symmetric function p,.

A skew-diagram is called a border strip if it is connected and contains no 2 x 2 block of
squares. In literature, terms skew hook or rim hook are also used. The height hr(v /1)

of the border strip is the integer one less than the number of rows.

Theorem 47. The product s p, is equal to

sapn= 3, (—)" sy,

v

where all partitions A C v for which v /A is a border strip with n boxes.

On the representation theory side, Murnaghan-Nakayama rule provides us with a

recursive rule to calculate the values of irreducible characters of the symmetric group.
If v/A = u is a border strip, then we write v\ for A. Moreover, if &« = (o, 0, ..., Q)
is a composition, then by a\ o, denote (0, ..., o).
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Theorem 48. If v is a partition of n and o« = (04,0, ...,0,) is a composition of n,
then

=Y (1) ok
summed over all border strips [L of V so that || = a;

Example 49. We compute x((s 4 3)1) Stripping the hooks can be visualized as a tree,

whose nodes are diagrams and whose arrows correspond to removing certain border

strips. Boxes to be removed are marked with dots and the appropriate sign appears to

the right of the diagram:
|
7 N
oo] |
° +1 ° —1
[ ] [ N BN BN J
/ N !
> o]
oleo|+1 oo —1 e|efe 1
[ ] [ BN J
! ! !
0 0 ® -1
[ BN J
!
(—1)°
Therefore, by Theorem 48, we calculate
(544)  _ _(332) (5.3)
Xi5431) = X3, X430
(2, 1 1) 3,1 22
= (% ((3 1))> (_X((3,1)))
)
= (0+ ) (= (=x1)))
= (-1
= —1.
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1.3.11.1 A Special Case

If A =0, then s, = 1 and the Murnaghan-Nakayama rule gives the decomposition of

the power symmetric function p,, in the Schur basis:

Pn= Z(_ 1 )ht(v)sw

\%

where the sum runs over all border strips v with n boxes.

1.3.12 Macdonald Polynomials

The Macdonald polynomials P, (x;q,t) are g; t-generalizations of the Schur functions

and monomial symmetric functions. They span the ring
Ar = Flxy, ..., x,]5
where F = Q(q,1).

For t = ¢, Macdonald polynomials specialize to the Schur functions:
Py (x:q,q) = 5;(x).

For t = 1, Macdonald polynomials specialize to monomial symmetric functions:
Py (x:q, 1) = my (x).

Macdonald defined a g;¢-analogue of Hall’s scalar product by defining

() 1 _qli
(Pas Pu) = (P2> Pu)gr = 57Luzl H 1A (1.2)
i=1 -

In addition to Schur functions and monomial symmetric functions, Macdonald

polynomials specialize to Hall-Littlewood and Jack polynomials under different limits.

For ¢ = 0, Macdonald polynomials specialize to Hall-Littlewood functions P (x;t).
To obtain Jack symmetric functions from Macdonald polynomials, set ¢ = t* for a
positive real number o and let 7 — 1, so that (1 —¢")/(1 —¢") — a for each r > 1. The

limit of the scalar product (1.2) is

&0 (1.3)

(pas Pu) = 2200
where 8;,, =0if A # p and 6, = 1.

We are going to see (Equation 1.3) in next section.
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1.3.13 Jack Polynomials

Denote the ring of symmetric functions over the field Q( ) by A(a). Note that A(a) =
A ®g Q(c). The ring of symmetric functions A(a) comes equipped with the inner
product (-,-) : A(@) ®q(q) Al@) — Q(a) defined by Equation 1.3.

Theorem 50. The following conditions uniquely determine the symmetric functions
Jy = (x,a) € A(a), where A ranges over all partitions:

1. (Orthogonality) (Jy ,Ju) =0if A # p.

2. (Triangularity) Suppose J), = Y., vamyu. Then vy, = 0 unless 1 < A.

3. (Normalization) If |A| = n, then the coefficient v) jn of X1X3...X, in Jy, is equal to n!.

The resulting functions Jj (x; ) are called Jack polynomials. They form a basis of

symmetric functions A(c) over the field Q(a).

If we set all but finitely many variables equal to 0 (say x,,+1 = X412 = ... = 0) in Jy,

then we obtain a polynomial J (xy,...,x,; @) with coefficients in Q(o).
We identify a partition A with its Young diagram {(i,j) : | < j < A;}.

Definition 51. For a box x = (i, j) € A, define the hook length h(x) of A at x by

h(x) =h(i,j) =i+ A;—i—j+1.
Equivalently, A(x) is the number of boxes directly to the right or directly below x,
counting x itself once.

Example 52. For the partition A = (4,2, 1), here is the corresponding Young diagram

with its each box filled with the corresponding hook length:

6l4[2]1]
3]1 :
1]

Set

Hy = []r0),

xel
the product of all hook-lengths of A.

Jack functions J, specialize to Schur functions s, and Zonal polynomials Z, in [3].
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o J;L(x;l) :H)LS/I fora =1,

» J)(x;2) =2, for o = 2.

1.3.14 Pieri Rule for Jack Functions
We define two a-refinements of the hook-length £, (i, j).

Definition 53. For (i, j) € A, respectively the upper hook-length h*(i, j) at (i, j) and
the lower hook-length h. (i, j) at (i, j) are defined by the equations

(i, j) =" (i, j) = A} —i+a(A— j+1),
WE(iy ) = haliyj) = Aj—i+ 1+ a (A — j).

Definition 54. The set A (x) of squares directly to the right of x = (i, j) € A4 is called
the arm of x, of size ay (x) = #A, (x) = A — j.

Definition 55. The set L) (x) of squares directly below x € A is called the leg of x, of
size [y (x) =#L) (x) = A} — 1.

In terms of arms and legs, upper and lower hook-length can be calculated as

hy, (x) = at(ap (x) + 1) + 1 (x),
R (x) = aay (x) + 1, (x) + 1.

Proposition 56. [4] Let n > 0 and (n) = (n,0,0,...) be a partition. Then
In =J(n) = Z Oc"_l(’l)n!z;lp,l.
Abn

Theorem 57. (J;,J;) = [Tuep b2 (x)h5 (x).

Proposition 58. [4] (JyJ,,J;) # 0 if and only if w C A and A/l is a horizontal

n-strip.

Theorem 59. [4] Let u C A, and let A /1L be a horizontal n-strip. Then
dnsdz) = ([TA2n ) (T 20) (TTBra)-
XEU x€(n) XEA
where [1ie(n) by (x) = nla”,

R (x), if A/u does not contain a square in the same column as x

Ay (x) =
hy,(x), otherwise
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and

h; (x), if A/u does not contain a square in the same column as x

By (x) =
h*(x), otherwise

The coefficient (J,J,,J3) is the coefficient of J; in JyJj,.

Pieri rule for Jack functions were established by Stanley [12] and for Macdonald

polynomials by Macdonald [7].

Claim 60. Sakamoto algorithm [11] in the following calculates the product of power

sum symmetric functions and Jack symmetric functions.

Algorithm 61. [/1] Take a general Young diagramY and n > 0. We parameterize Y as
y=v(W = (s 70,852, e SN Let rg = 0, Sypy1 = 0. In this parameterization,
the outer-corners of Y1) are given by (r1,s1),(r2,52), ... (Fm,Sm), where symbol ”(1)”
indicate that this diagram is going to be added by the first box.

Step 1: Add one box, say to place (ri,—1+1,si, + 1), to YY), and denote it as YV U

(ri,—1+1,si, + 1). Associate a coefficient to Y, which is given by

i—1 [a(a(rj,sil+1)—|—1>+l(rj,s,-,+l)]

=1 [a(atrat sy + 1)+ 1) + (1050 sy + 1)+ 1))

~

m [Ola(l’,l_l—f—l,sj)"—(l(f’zl—l"'_lvsj)"f—l)}

X
= [a(a(ril_l s+ 1)+ 1) n (l(ril_l s+ 1)+ 1)]

-l hy(rj,si, +1) UL r,1 1+1,s))

:jzlh(rj 1+1Sll+1 I:I r,l 1+1SJ+1+1)+

Step 2: Take a coordinate of Y =y U (riy—1+1,s;, +1) asin YD, namely, set

Y@ =yy U(rij—1+ Lsi +1) = (s7770s2 ™" s ™).

Add one more box to anywhere you want to this diagram if this addition gives us a
Young diagram, and we obtain a similar factor as in Step 1. In this step, however,
we need to work with the following "exception rule". If the outer-corner (ry,si) is
produced by the box just added in the last step, we should omit the factor corresponding

to (ry, k) in the numerator.
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Step 3: Denote the Young diagram after the second addition as Y® =y®@y (ri,—1+
1,si, + 1). Add third box to Y3 and obtain similar factors as in Step 2. Note that we

need to work with the exception rule. Repeat this manipulation recursively until n-th

box is added.

Step 4: Multiply

#{klri,—1<ri_ -1}
(_1) 'k k1 JYU(r,'],l—H,sil+1)U...U(r,'n,1+1,s,-n+1)7

to the result of Step 3.
Step 5: Repeat Steps 1 to 4 for each way to add n boxes to Y, and sum up all the terms.

Formula for Jy p, is obtained by doing Steps 1 to 5.
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~.

2. THE PRODUCT OF JACK SYMMETRIC FUNCTIONS J;, AND THE

POWER SUM SYMMETRIC FUNCTION p; AND p, FOR ANY YOUNG
DIAGRAM 4

Our main tool will be Stanley’s Pieri rule for Jack functions [4]. Here is the first step

of our proof of Murnaghan-Nakayama rule for Jack polynomials.

Theorem 62. For k =1 Algorithm 61 for the product Jy, py in [11] holds.

Proof. Given partitions u and A so that A/ is the box (r;,—1 +1,s;, + 1), Algorithm

61 calculates the coefficient of J; in the product J,, p; as

i1—1 rJ7S11+1) 4 1’—n1 h‘,;t(ril_l—l—l,sj)
hft 0 — 1+1Sll+1>+1 j:ilhg(”il—l‘f‘l,sj-y-]-i—])-l-a

; (2.1)
j=1

where m is the number of outer boxes and #; is the number of place which can be added

one box.
(rij—1+1,s))
(rj7si1+1) /1 ' [
L] 1/
74 ’t/(rj,sj) (ri1—17si1—1)
b ;
(o) i)

I
3

I
L
~.
!
=

/(rj_l + l,s,-] + 1)

']
= (rjs)) (riy—1,8i,-1)
- :
l—//<ril7sil> (rj7sj)

Figure 2.1 : The coefficient of J; in the product J, p; where A /u is a single box
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For a given diagram, define outer corners (black dots) and inner dots (white dots) as

follows:

&

Figure 2.2 : Outer and inner corners

Let partitions A and u be so that A /ut consists of a single box. Mark this box by "1"
as in Figure 2.3. Furthermore, let 17 denote boxes which are at the same column with
box "1" and & show boxes which are at the same row with box "1" as in the following

figure:

Figure 2.3 : The product J, p; where A /u consists of a single box

Using the Stanley’s Pieri rule for Jack polynomials in Theorem 59 in Section (1.3.14),

the coefficient of J; in the product J,, py as
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(er#A/w(X)) <erl Bw(?C)) (er(n) h, (x))
2

[J)L]Jupl =

(ILG,LL\n & () Teen hj, (x )) (I—[xel\(nu(/l\u))hi(x)rlxenu(/l\u)hi(x» a
[Liea 1), (o) [Teen A (x)

meu\nhﬂ( )IIxen *( )
[eenuanu) 25 () Theear (nuar ) A (x)

eru\n H() ern *(x)
l_[xe/l\ (MU(A\w)) ( ) ern h (x)

[l o (2.2)

When A /u is a single box, say to place (r;,—1 + 1,s;, + 1) then using the Algorithm

61, we have the following formula:

ey e
x€n hi (x) x€n h/ﬁ (x)+1
B hﬂ(rl,sil—l—l) hZ(r2,Sil+1)
(h;(ro—Fl,Si]—Fl)-l-l) (hﬁ(r1+l,si,+l)+l)
h;kl(ril_l’sil+l)
U (hy(riy 2+ Lsi 1))+ 1
ii—1 h* (ri,si +1
- 11 50+ 1) 23)
= h (rj— 1—}—1s,1+1)—i—1
and
th(x) H R (x) _ h“(r,1 1+ L,sip) h”(ri1 1+ 1,si,41)
xeé hl(x) xe& hf:(x)—'—a (h“(rll 1+ 1 Sll+1+1)+a) (h (rll 1+1, sll+2+1)+ )

Ry (riy—1+ 1,5m)
(hil(rilfl + 17Sm+1 + 1) +(X)

_ In_1[ hl-‘(rl1 1—|—1 S]) (24)
SR (i Lsja D )
J J
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Thus using the Equation 2.3 and Equation 2.4 we have the following formula;

he(x ’:fx
e = T T

xen A xe’g’ *

_ lﬁ rjasu"‘l) e hf(ril,lﬁ—l,sj)
joi M 1+1Sll+1)+1j:i1hl:(ri1—l+lasj+l‘|‘1)+(X

. (2.5)

We show that the Equation 2.2 is equal to the Equation 2.5. Hence we prove that
Algorithm 61 and Stanley’s Pieri rule for Jack polynomials coincide whenever A/t is

a single box. [

As an example in [11], let’s calculate Ji3 1)p1

B (Lo +2)
Hope = ((206+1)(30¢+2)JBID

|
_'

| T1]

20

et )@ H

o

aBa+1)
(et )Ba+2) 0 ])
| o
1
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2.1 The Relation of Jack Symmetric Functions J, and the Power Sum Symmetric

Functions p, for any Positive Number »

Definition 63. [2] Given a sequence (ay),>0 = do,d1,ads,... of complex numbers, the

corresponding generating function is the power series

- Ya

n>0

If numbers a, enumerate some set of combinatorial objects, then we say that f(x) is

the generating function for those objects. We also write

[x""] f(x) = the coefficient of x" in f(x) = aj,.

Also the generating function for the r-th complete symmetric function 4, is in [3]

— Z hrl‘r = H(l —xit)_l.

r>0 i>1

The generating function for the r-th power sum is in [3]

DI LD e

Zi
l—x, = dt l—xt

r>1 i>1r>1 i>1
so that
d H'(t)
= —log (1—x;t)"" = —logH(t) = :
ll;! it dt H(r)
Hence,
H'(t) = P(t)H(t)
nhntnil = (pl + pot +p3l‘2 + )(1 +hyt + )
nhat" ' = (prhu—1+ oo+ puothi + pa)t" !
nhy, = pihy1+...+pp_1hi+pa. (2.6)

A similar identity is satisfied by power sum symmetric functions p; and Jack

polynomials J; as well:

Using the formulas,

Abn
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and

" _1
J(t):nzz‘b.]n(x)anm :H(l—x,t) o,
in [4] we have:
1 1
logl(t) = aZlog<l_xit)
logl(t) = élogH(t)
J%(t) = H(r)
Then,
H()=PO)H({) = aJ* ()] (1) =P(t)J*)
= aJ'(t)=J(t)P(t) .7)
Therefore,
o) = X ) 70 = ¥ )™
nZOn n!oh =l nlan
By Equation 2.7,
al'(t) = J(t)P()
tn—l
o Iy = Jn(
n; S PNIPT n;) )
Z.I’l—l t2 t3 )
,;J”(n a1 = 1+J1 +J22'O£2 +J33!a3+... (P14 pat +p3t”+...)

P2+—

p1+pat+ pat> + ...

B O Py A
lpla lpza 1p3a
3
t

2102
4

3ol

)°

Jp2
2102

12

2102
3

3la2

4

2102
/5

a3

+Jhpi +Jhp2 +Jop3 +...

+J3p2 +J3p3 +...

+J3pi
J J
n 1P2+ 2P1
o

)+ (o 2o

J
+(p4+ 1P 4
(04

Jipi

J3pi
312

+

>t3+...



Hence,

Ty pr (=1 !

=Y

o] (n—r)!

(2.8)

2.2 The Product of Jack Polynomials J,, and J, for any Young diagram u

Let partitions A and u be so that A/ consists of Ay /) = ki, A2/ Up = ko, ooy M/ i =
kn, boxes. Let n’s denote boxes which are on the same column with the adding boxes
and &’s denote boxes which are on the same row with the adding boxes as in the

following figure:

m N2 M3Ma
§1 oo
& hd
53 °

Figure 2.4 : The product of J, and J,, for any Young diagram u

Then the coefficient of J; in the product J,,J, where A /u = (ki, ..., kp) is

M (x) hy(x)  nlo”
S Judn =
Vol u XEI;{H h(x) sem 15 (%) TTayuhs (%)

- hit(x) hy, (x) n
- H A (x) wen h;(x) (kl...km ) 2.9)

xeg\n

2.3 The Relation of the Product J,, p> and the Product J, p%

Theorem 64. Algorithm 61 holds for J, p>. The coefficient of Jj such that A = (u,1,1)

in Jypy in Algorithm 61 is the coefficient of—éJu p12 in Theorem 59.
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Proof. For starters, calculate p; in terms of Jack polynomials:

Jl = Ppi,

J = apy+piJi =apr+pi?
1 N 2
= —(h-pd) = —(h—J?).
22 oc( »—p1°) a( »—J17)
Hence,

Jupr = —ula—Judi?).

RI—RRI~

Jupr = —(ulo—Jup1?). (2.10)

Firstly, using Proposition 58 we know that (J,;J>,J;) = 0 is in the Equation 2.10 for
A=(u,1,1).

We determine the relation between the coefficient of J3_(, 1 1) in the Theorem 59 and

the coefficient of J; _(, 1 1) in the Algorithm 61.

Let u =
Then v = (u,1) =
and A = (u,1,1) =
Firstly,
hp (%) H (x) hp (%) hp (%)
Jupr= £ === = uri=[l~—=p
H ghv(x) xel;{n Y (x)"" XIE_,I7hV(x) Y el x1;17hv(x) Y
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P R ()

* J),
xENUV\U m, (x) xev\(nuUv\u) h? (x)

ORI,
ven 1 (x) By (v\ )
_ Hh’(,(x) a J,
xen n;(x) a+1
Hence
h; (x)
Jupt = 5 Jv pi1
e g]hv(x) Y

A 2.11)

Secondly, by the Algorithm 61 we have,

T Mt hy(rgsi +1)

I)upr =
2l up> ]H R (ot + Lsig + 1)+ 1 2 By (rjo1+ sy +1) +1

_q izl hL(rj’SilJrl) i—1 h;(rj,SilJrl)Jrl

T a+tl JH hy(rj-1+1, s,1+1)+1 H VA (ricr s +1)+2

S HIHI a(r sy + 1)+ (k1)
a-+1 rJ 1+1,s,+1)+k

k=1 j=1

(2.12)

Hence the factors in the Equation 2.11 and the factors in the Equation 2.12 coincide.

O

2.4 Some Computations

We calculate some products for some specific Young diagrams. Using them we obtain

some general formulas.
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Let n be a nonnegative integer. Given the partition 4 = n so that A /u is a single box,

we have the following formula:

o on 1
= ant 1700 T g ey

Jup1

Moreover, let the partition u = 1" and A /u is the one box. We obtain the following

formula:
o

a+n

Jl"pl = J(271n—1)+ J1n+l.

o+n
Let the partition 4t =n. When A /i equals to the two, three and four boxes respectively,

we have the followings:

1
Jnp2 = J(n12)
((n+ a+ 1) (an+1)

2(a—1)

+Xaw+agn+na+4)ﬁn—na+1

)J(n+1,1)

(n—1)a’n

_|_
(mHJXa+U<n—Ua+1

)me

B on J
(an—+2)(an+2)(a+1) LD~

1
(an+1)(a(n+1)+1)(o(n+2)+ 1)J(n+3)

Jupz =

+ 3(a—1) ,
(@(n+2)+ D)(a(n—1)+D)(a(n+1)+2)(an+1) Y

4 3an(o—1) ;
(an+1)(a+1)(a(n+1))(an+2)(a(n—2)+1) (n+1,2)

3(a—1) p
_ ((x—Fl)(OC(n—I—l)—{—Z)((x(n_1)+1)(an+3) (n+1,1,1)

. a’n(n—1)(n—2) J
(on+ D(a(n—1D+D)(a+ D(am—2)+1)2a+1) ®3

3a?n(n—1) p
(a(n—1D)+1)(a+2)(an+2)2a+1) "2

+

on
T et )@+ 2)ant3)

34
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1
= (an+1)(oc(n+1)+1)(a(n+2)+1)(a(n+3)+1)1(n+4)

4(ac—1)
a2 )@+ ) @nt D+1)

1
Ta(n+3)+ D(ant 1) 03D

2000 —1)(2a?(n* — 1)+ a(4n+3) —1)
(a(n+1)+1)(a(n+1)+2)(a+1)(a(n—1)+1)

1
(an+2)(a(n—2)+1

)J (n+2,2)

4(a—1)
(an+1)(o+1)(a(n+2)+2)(a(n—1)+1)

1
Tt 1)1 3)" (24D

4a’n(n—1)
Tlant e+ D+ Dian+2)(an—D+ D2at 1)

1
(a+1)(a(n—3)+ 1)J(n+1,3)

4(a(B3n—4)+7) (o —1)on
(an+1)(a(n+1)+2)(a(n—1)+2)2a+1)(a+2)

1
Ta(n—2)+ D(ant3) 12

4(ac—1)

+ (a(n—1)+1)(an+4)(a+1)(ax+2)(a(n+ 1)+3)J(n+1,1,171)

N a*n(n—1)(n—2)(n—3)
(an+1)(a+1)2a+1)Ba+1)(a(n—1)+1)(ax(n—2)+1)

1
Ta(n—3)+1) 0
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40’n(n—1)(n—2)
a+2)Ba+1)(on+2)(a+1)(a(n—2)+1)

1
Ta(— D+ 1) 3

a’n(n—1)(a—1) J
T Qo+ (an+2)(a+2)2(a(n—1)+2) "2

4a’n(n—1) ;
* (a+1)(2o+2)(a+3)(an+3)(a(n—1)+1)" ®2LD

an
(a+ 1)(oc+2)(oc+3)(an+4)J(n,1,1,1,1)-

Using similar methods, we also computed J, ps which has nineteen Young diagram
which we do not include here.
Moreover, we give a general formula for positive integers n and k in the following:

1
(an+ )T (a(n+i)+ 1))J<"+">

Jupr =

(=D lan
+ k —1 R J(n,lk)
(an+k)(IT;Z, (a+1i))

o [T (n—(i—1))

! (a(n—(i—1)+ DT ((— 1o+ 1)J(n7k)

k(a—1)
T la =D+ D@+ k=—2)12) (@t k=1)+1)

1
. Jins (ke
T2 (a(n+ (i— 1))+ 1) DD

ko T (n— (i 1))
(an+2)((k—=2)a+2)((k—1)a+1)

1
(T (o = ) (I i+ 1)

J(nk—1,1)
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TP (n— (i 1)

kok =2 (o —
)

1
T lant D@+ D+ Dlan+2)(a(n—(k=1)+1)

1
(M o+ D)1 (a(n—i) +1

Jns1 k=1
)) (n+ )

(=1 —1)

T latn =D+ D@+ )+ (k=1)(an+0

(—D k(o —1)

T lant Dam—1)+1)(an+2)+ (k—2))

1
(ot 1)+ (1) 212

kn(n—1)o?

T lat =D+ D(an+k=1)2a+k=2)(at k=1

Y n,2,1k-2)

(TS5 (i)

37



Let it be an m x n rectangular diagram. The product of J,, and p, where A /1 consists

of two boxes as in the following figure:

T T

SN o
nH T

LJ 1] [1]2] :ﬂ

Figure 2.5 : The product of J;, and p; for an m X n rectangular diagram u

Hence we have the following formula:
nin—1)o?

ma+mmm_na+mya+n

Jupr = {0t m) Jy, +
((n+ 1)a+m> (na+m)(a+1)

Ja,

n 2mno(o—1) ]
(n+ Do+m)na+(m—1))((n— Da+m)(no+(m—1))""

B m(m—1) Iy~
4

(nat+m) (na—l—(m— 1)) (a+1)

na(no+1)
om+mxm»um+mya+n

J)s

where

A = EEpy= = PIE H s =

(1] L] j

Also we obtain the following corollary for the Young diagram 1™.

Corollary 65. Let n and k be positive integers. When m =n —k;

m ok

Jinde = ey

Otk+mj(k’]m).
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2.5 The Product J, p>

We know the following equality by using Equation 2.10,

[J/I]Jup2 = é [[J/I]Jufz - [JZ,]JNJIJI] .

Then

" W (ri 1+ 1,s;
lapr = ] riy-1+1,3)

i B (i s+ 1)+ o

i1—2

H h“(rl2 1+1,55)
j= lzhg(rlz 1+ 1, SJ+1+1

n hit(rl-rl—kl,sj)

21 hy(rj,Si+1)
by (rj—1+ 1,5, +1)+1

J=1

g (rlz 1+1SJ)

]=l]71 ’"12 1+1S]+1+1+1>+

i1 hz(rj7si1+1)

i B+ Lsja+ 1) +a

) h;(i‘j,sil —’,—1)

,Hl hy(rjioi+1sp+1+1)+1

it h;(rj7si1+l)

e

J=ip "H

(ric1+14+1,8,+1)+1

N h;’l(’”j—l +1,s;, + 1)+1

2(a—1)

(R (riy—1 + Lsiy + 1)+ 0+ 1) (R (riy—1 + Lsiy + 1)+ o+ 1)

Briefly, we obtained the following results:

1. An algorithm to calculate J;, py is proposed by Sakamoto et al. in [11].

2. Computation verification has been done for partitions of small size. We computed

the expansion of Jy, p; which is claimed by Sakamoto et al. in [11] for the cases

u=(n),u=(n1)and k€ {1,2,3} whenn > 1.

3. Jy p1 calculated by Sakamoto et al. holds. Hence we verified that the algorithm of

Jupi for k= 11n [11] holds by comparing to the results in [4]. This is the first step

of our main proof about Murnaghan-Nakayama rule for Jack polynomials.

4. We express J, with respect to Jack functions Jy,J, ...

functions py, p2, ..., pn Where n > 1.

5. The coefficient of J; such that A = (u,1,1) in Jy p is the coefficient of —é]uplz.

We showed that the coefficient of J is the same as the coefficient of Jy_(, 1) in

the algorithm of Sakamoto et al..
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. We computed Jy; p> where U is the m X n rectangular diagram.

. We compared the expansion of J,,J, proven by Stanley in [4] with the expansion
of Jy pi indicated by Sakamoto et al. in [11] and we pointed out they are exactly

equivalent to each other.
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3. THE PRODUCT J,; p, FOR SOME CASES

We studied the products Jy, p1 and Jy, p> when U is an arbitrary Young diagram in the
previous sections. We find the formulas of the product J, p, for the following cases

and hence the formula of the product J, p, is generalized partially in this chapter.

3.1 The Coefficient of J; in the Product J, p, where A /11 is a Column of n Boxes
Theorem 66. Let A and 1 be two Young diagrams whose difference A /1L is a single
column of n boxes. Algorithm 61 for Jy, p, calculates the coefficient of J,.

Proof. By Equation 2.8,

Jo = Juoip1+dp-apa(n—1)a+Jy3p3(n—1)(n—2)a?

+...+hpp-1(n— 1)!a”_2+pn(n— 1)!05"_1.

Then,
_In—Jp1p1 —Jpapr(n— 1)@ —Jy3p3(n—1)(n=2)0® — ... — Jypy_i (n—1)!a" 2
P (n—1)lon1 '
Therefore,
[J}L]Jujn — [J)L]J,u-ln—lpl — [Jl]fufn_zpz(n— 1)06 — . — [-])L]J,ujlpn—l(n_ 1)!06"_2

From Proposition 58, we know that

Ualdudn =0, (3 udn—1 =0, N3 JuJn—2 =0, ..., [J3]JuJ2 = 0.

Hence,
[Jl]Jliplpnfl

[‘Il]‘]llpn = - o

Let a partition & be so that § /i consists of a single box in column 1; of y. Then,

Ry (s) (s
= 115 11 "

s€m sEP\M

_ h(s) 4 B (s)
= 15 s
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Thus,

! () 1y H(s)
[J/I]Jupn = —_[J),]Juplpnfl - H H [J)L]Jgpnfl.
a vem S) se& T (S)
Similarly,
[J ]J _ [JA]JSJn—l — [J)L]Jg.]n_zpl — [J)L]Jg.]n_g,pz(n — 1)(11 — 2)06 — . — [JA]Jgflpn_z(n— l)!OCn_3
AlVEPn—1 (n — 1)!06”*2 .
By Proposition 58,

1
alspu-1=—_alJspipu-2.
Let a partition v be so that v /8 consists of a single box in column 1; of 8. Hence

h5(s) vy h2(s) @

o= I Wy oc i
Thus
) _l[J Y 1 H s (s) H hf(s) AT,
AEPn—1 = AMEP1Pn—2 = sem h*(s) 52h (S)OC—|—1 AvPn—2.
Vallupn = ——H o Hhit(s) ValJspn-1
56771 S) se&; hf(s)
_ () 1 1505) ¢ HGs) o H20s)
- @ f,! v L) I i) Iy g g Veivps
Hence
(= hy, (s) h(s) hy (s) hy (s) he(s) (1 H (s)
aklupn =g SE{ h(s) SQZ 1y (s) slel hy(s) sEIn] hi(s) g h3.(s) <k—1s16—<§[k hff(s))
) ) B e ) @
alupn = =i Ie—,,ll hi;(s) Ql hg(s)owrl SI;,,II i(s) o+2
hy(s)  a Ri(s)  « o Rt (s)
I S ren e B § Ve rea ey (HQ h&@))
(1) hy(s) [ h (s)
N E(Ht sle—% R (s) (k_lslg;[khi(s)) 1)



Furthermore,

il (rjysi, +1 1 I (rj,si, +1
ibarn = T e ) el
i i (rj— 1+1 si+1)+1 i R5(rji—1+ 1,5, +1)+1
i3 1 hy(rj,si; +1) ’”Illl i(rj,si,  +1)
i+ Lsip+ 1) +1 55 hi( r]1—|—1s,n1+1)+1
N (s, 1) ﬁ he (rip—1+1,5))
SR (o Lsi, + 1) 41 2 b (i + 1sj + 1) + o
1"121 R (ri,_141,s}) 1”13[ hY (riy—1+1,s;)
e M (i1 + Lsj+ D)+ o g B (rg—1 + Lisj +1) +
Mpy_1 h:(l‘l’n_I,I + 1,Sj) ﬁ ]’li” (ri,,—l + 1,Sj)
e Wit Lspa+ D)+ a g A (o + Lsj + 1) +a
Hence
Agy—1 il hy(rjysiy +1)
alupn = 1 (2) 1) Hh* TS ey
(a+1)(a+2)...(a+(n—1)) jj ki (rj—1+1,si, + 1)+

i1 hl’j(rj,siz + 1)—|—l 31 hﬂ(f‘j,S,‘S + 1) +1+1
Ry (rji—1+1si, +1)+1+1 it H(rjmr+ Lsip + 1)+ 14141

j=1
’"1111 by (rjysi_ + 1)+ 1+ 1+ 41
ERAGE 1+1slnl+1)+1+1+1+ +1
I:[‘ Wy (rysi+ D +1+ 1+ 1441
it P (rj- 1+1szn+1)+1+1+1+1+ 41
T W (ri 14 1,5;) — (k—1)
k:1]:,lh'$(r,l 1+1SJ+1+1)+O£ (k—1)
B ﬁ H a(rjosi+ 1)+ (k= 1)
P S o e hy(rji—1+1,si+1)+k
kE W+ 1s)) — (k—1
H = (rl1 1+ 7SJ) ( ) (3.2)
iy B (rip -1+ Lsj + D +a— (k= 1)
We see that the Equation 3.1 is equivalent to the Equation 3.2.
O
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3.2 The Coefficient of J; in the Product J, p, where 4 /u is a First Row of n Boxes

Theorem 67. Let = (W1, Uy, ..., 1) be any partition. Let A = (W) +n,Up, ..., ;).
Algorithm 61 for J, p, calculates the coefficient of J).

Proof. Since L = (U1, W, ..., 1) and A = (U; +n, Uy, ..., ;) we have

Afu=m= 1 [ L[ 1][]}

Thus we obtain the coefficient of J, in the product J, p, where A /u is a first row of n

boxes using Theorem 59;

H (x)
I udn = :
[l] u /g hf}(x)
=y | Wis) o1 Rt (s)
Vilupn = ZIJI i+ 1 Sle—g R (s)+an E in+1 Sl;g h(s) (3-3)

Also, take L = (U1, Mo,y fy),V = (W + Lo, s lg), W = (U + 1+ 1o, . ) =
(,ul —|—2,[.L2,...,[.Ll),...,'}/: (;ul +1+...+ 17“27"'5“1) = (.ul + (l’l— 1))“25"'7“1)7)‘ =
(‘Lll +14+1+...+ 17“27'“7“1) = (I.L] —|—I’l,,ll2,...,[l1)-

Uillupn = 1”11[ K (ri 14 1,5)) 1"12[ Y (riy—1+1,s))
e W+ Lst )+ o A h (o + Lsn+1)+a

J=i J=i

ﬁ hY (ri, 1 +1,s)) nﬁl Rl (ri,—1+1,s})
Y (ri—i+Lsj+1)+a h(ry—1+1Lsi+1)+o

J=0 J=i

il h%(ril,1+1,8j)

J=i

We obtain the coefficient of J; in the product J,, p, where A /1 is a first row of n boxes

using Algorithm 61 where i; = 1 in the following;
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i = T O B
Hon jzlhﬁ(r0+1,sj+1+l)+a jzth(ro+1,sj+1+l)+a

m3 hf(l’O"FLSj) my,_1 hl(r()—}-hsj)

[

=1 :f/(l’()-f-l,SjJrl-l-l)-l-OC =1 hz(l’o+1,sj+1+1)+06

i hf}(”0+1asj)
=i i (ro+ 1,501 +1) + o

3
|

n ﬁ c(ro+1,s)+(k—1)o

(3.4)
COC—|—1 =1 ]:1 r0+1,S]+1+1)+kOC

“:1

Hence the Equations 3.3 and 3.4 are equivalent to each other. 0

3.3 The Coefficient of J; in the Product J, p, where A /u is a Row of n Boxes

Theorem 68. Let A and u be two Young diagrams whose difference A /1L is a single

row of n boxes. Algorithm 61 for J,, p, calculates the coefficient of J,.

Proof. Since

Ry (x) (%)
[JA]J/JJ - *
xl;g h%(x XEN h/l(x)
n—1 1 hiL(S) n h* (S)
alupn =11+ £ (3.5)
i ll;IllOH-l g h(s) kl;ll Sle_,!k h; (s)
Also, we obtain
Uil = ol lﬁlﬁ Wy (ri—1+1,5)+ (k— 1)
e - -
K =1 (COC+1) k=1 j=i hg(ri1,1+1,Sj+1—|—1)+kOC
i1 hi(ri,siy +1)—(k—1a
u( JoPu ) ( ) (3.6)

s hﬁ(l’j,1 +1,8, + H+1—-(k—1)a

Hence the Equations 3.5 and 3.6 are equivalent to each other. [

Consequently, we obtained the formulas of the product J, p, for some cases in
this chapter. We showed that the formulas which were obtained using Theorem 59

coincided with the formulas which were obtained using Algorithm 61.
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4. ANEW COMBINATORIAL IDENTITY FOR CATALAN NUMBERS

Catalan numbers enumerate a diverse collection of disparate mathematical objects

which seem unrelated at first impression. For a nonnegative integer n, the n-th Catalan

2n
n

number, C,, is . (

] ) . A standard combinatorial definition is that the Catalan number,

C,, is the number of Dyck paths in an n X n box. A Dyck path in n X n box is a path
starting from the corner (0,0) to the corner (n,n) which stays always weakly below

the diagonal (or always weakly above).

For any positive integer n and integer r, define the set U (n,r) as in [5]:

n n
Un,r) =< () eN""': Y uj=nand ¥ iu;=r (modn+1);.
i=0 i=0
The following set V (n) appears as (¢°) in Stanley’s Catalan Addendum [12]:

n J
V(n) = {(v,-) EN”:Zvi:nand Zvizjforallj: 1,...,n}.

i=1 i=1

For a sequence w = (wg,wy,...,w,) of total n, denote the multinomial coefficient
n n
(wo,wl,...,wn) by (w)'

Asin [5], attach to the sets U (n, r) and V (n) generating functions, Y, q(x) where g is an
indeterminate and the index w runs over the corresponding set. Denote the generating

functions by u(n,r) and v(n) respectively.

In [5], Aker and Can conjecture that

Conjecture (Conjecture 1.1 in [5]). For a positive integer n and an integer r, the

generating functions u(n,r) and v(n) coincide.

We prove this conjecture in Theorem 81 as a direct corollary of a bijection established

between the sets U (n,r) and V (n) in Theorem 80.

47



4.1 Preliminaries

Definition 69. Let a = (ay,...,a,) be a sequence of positive integers and b < by <
... < by, be the non-decreasing rearrangement of a for a given positive integer n. Then
the sequence a is called a parking function of length n if and only if b; <i for i =

1,...,n. Denote the set of parking functions of length n by PF(n).
Theorem 70 ( [13]). The number of parking functions of length n is (n+ 1)1,

Lemma 71. Every permutation of a parking function is also a parking function.

This is to say that the symmetric group on n letters &, acts on the set PF(n) of
parking functions of length 7 of cardinality (n+ 1)"~!. If n = 3, then the set of parking

functions is divided into 5 orbits under the symmetric group action as follows:

111

112,121,211

113,131,311

122,212,221
123,132,213,231,312,321

Each row above represents a symmetric group orbit whose first entry is chosen to
be non-decreasing. Notice that orbits are parameterized by non-decreasing parking
functions. The number of symmetric group orbits inside the set of parking functions,

PF (n), is the n-th Catalan number, C,,.

Corollary 72. The number of non-decreasing positive integer sequences (by,...,by)

sothat 1 <b;<iforalli=1,... nis the n-th Catalan number,

1 2n
G = .
" n—l—l(n)

The following set (see [1])
B(n)={(b;) eN":1<b; <by <---<b, <nand b; < i}

also has cardinality C,. In other words, we can directly produce a bijection between

the set of Dyck paths and B(n) as follows:
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For a given Dyck path, record the heights of each step. The sequence of heights is an
element of the set above. Conversely, given a weakly increasing sequence as above

determines a Dyck path.

We can construct a bijection between the sets B(n) and V(n), both of which has

cardinality the Catalan number C,,.

Example 73 ( [14]). Consider a Dyck path on an n X n grid and label the horizontal
line segments by their height above the x-axis plus one. For instance, B(3) =

{111,112,113,122,123}.

111 112 113 122 123

Figure 4.1 : Valid Paths

On the other hand, use the labels to construct the corresponding n-tuple as follows:
Count the number of 1s,2s and 3s and so on among the labels. Take the counts to form
the n-tuple v, v, ...,v,, where v; denotes the number of labels i, where 1 <i < n.
For instance, consider the labels 1,1 and 1 of the first 3 x 3 grid in figure 4.1. Then
vi = 3,vp = 0,v3 = 0. The corresponding 3-tuple is 300. We can see that the desired
properties are satisfied:

1) Every v; is nonnegative.

2) The sum of every partial sum with j summands is > j.

3) The total sum is 3.

Hence V(3) = {300,210,201,120,111}.  Notice that there is a one to one

correspondence between B(3) and V (3).

4.2 The Sets U(n), U(n,r) and the Shift Operator

In this section, we prove that the cardinality of the set U(n,r) is equal to the n-th

Catalan number, C,,.
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For a positive integer n, the following sets are in bijection:

U(n) = {(uo,...,un) e N . iui:n},
=0

1
Un) := {(uo,...,un) c(Z/(n+1)Z)": Z”i :n}.
i=0
Denote the set of n-element subsets of a set X by (’rf ) and the set {1,2,3,...,n} by [n].
For u = (ug,uy,...,u,) € U(n), define F : U(n) — ([2:}) as follows:
F(ug,up,..un) :={ui+1<u+1+uwm+1<..<wuy+up+..+u,+n}.
Then,

Lemma 74. The map F : U(n) — ([il"]) is a bijection. The cardinalities of the sets
U(n) and U(n) are equal to (*").

Proof. First, the map F is well-defined: Since 0 < u;, we have 1 < uj + 1. Similarly,

0 <u; implies that fori =1,...,n,
utur+-Fu Fi— 1 <uytup -+ +u i

We also have uy +us+---+uy,+n<ug+uy+ur+---+u,+n=n+n=2n.

The sequence
w1l <up+up+2<---<wuptwup+-+u+i<--<wuptup+--+u,+n

forms an n-element subset of the set [2n].

We prove that F is a bijection by providing an inverse function, G.

For any n-element a = {a; < ap < ... < a,} subset of [2n], set

G(a):=(2n—ap,a1—l,ap—ay—1,...,ap—a,_1 — 1).

Let u = G(a). Such u lies in U (n); that is, all entries of u are nonnegative and they add
up to n. Because 1 < ay, we have u; =a; — 1> 0. Similarly fori =2,...,n, a;—1 < a;,

hence u; = a; —a;—1; — 1 > 0. Finally, a,, < 2n implies that ug = 2n—a, > 0.
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Also the sum of all terms telescope and cancel each other:

2n—ap+ay—14+ay—ay—1+---+a,—a,—1—1=2n—n=n.
Clearly, F and G are inverses of each other, hence F is a bijection. O]

Let s be the cyclic shift operator on the set U (n): For (ug,...,u,), set

s(ug, ... uy) = (Ug,... up,up).

The operator s induces an action of Z/(n+ 1)Z on the set U (n).

Define another map y : U(n) — Z/(n+ 1)Z. For (ug,...,u,) € U(n), set

n
lll up,...,u Zlul
i=0

Lemma 75. 1. Foranyu € U(n), y(s(u)) = y(u)+ 1.
2. Cyclic shift operator s is a fixed-point free automorphism of U (n).

3. Foranyr € Z/(n+ 1)Z, shift operator s takes the set U (n,r) bijectively to U (n,r+

1).
Proof. 1. For any u = (uy,...,u,) € U(n),

:Zis ,—lem-l 21_1”1 ZJ”J Z”J
=0

=y(u) —n=yu)+1.

2. Suppose the automorphism s fixes some u = (u,...,u,) € U(n), this implies that
all n+ 1 coordinates of u are equal. On the other hand, as an element in U (n), sum of
the coordinates of U (n) is equal to n, which is clearly a contradiction. Therefore the

automorphism s is fixed-point free.

3. Since it is an automorphism, any restriction of s to a subset of U (n) is a bijection. By
(1), the automorphism s maps U (n,r) to U(n,r+ 1) which shows that the restriction
s:U(n,r) — U(n,r+1) is a bijection. O

Corollary 76. For a positive integer n and an integer r, the cardinality of the set

U(n,r) is the n-th Catalan number, C,,.
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Proof. Note that U (n) is a disjoint union of U (n,r)’s where r € Z/(n+1):

Un)= || U(nr

reZ)(n+1)

and

4.3 Necklaces and the Main Result

In this section, we prove the equality of the generating functions u(n,r) and v(n).
We first establish a bijection the sets U(n)/(s) and V(n), which in return produces a
bijection between U (n,r) and V(n). The equality of the generating functions follows

as a direct corollary.

Define a string of pearls to be a finite sequence of nonnegative integers. Elements
of the sequence are called pearls, each with an assigned value in the string. For
convenience, we allow such a string to be circular. Such a circular string is called

a necklace.

Definition 77. Given a string of pearls A labelled sequentially aj,as,..., by ¢(A)

denote the length of string A and by |A| denote the sum aj +ay + - -.

A subsequence S of a string A consisting of consecutive pearls is called a substring.
Write § < A. Denote the set of all substrings of A by Sub(A). Then, Sub(A,<) is a

partially ordered set.

Call a string B a block if by +by+ -+ by >k for all k =1,...,4(B). Blocks of a
string A are those substrings which are also blocks. Denote the set of all blocks of A

by Blocks(A).

Let A =(1,0,2,1,0,3). For instance, (2,1,0,3) is substring, whereas (2,1,3) is not.
The blocks of A are (1), (2), (2,1), (2,1,0), (2,1,0,3), (1) (this is the 1 to the right of
2) and (3). Note that A is not a block.

If a string A has at least one positive pearl, the set of blocks of A is not empty. The
partial order < on the set of substrings of A induces a partial order on the set of blocks

of A.
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Notice that in the above example, each positive pearl is contained in a unique block of

maximal length.

Now fix a necklace N in U(n)/(s), i.e. a circular string of n+ 1 nonnegative integers

whose sum is n. Note that any such necklace contains at least one pearl with label 0.

Fix a clockwise orientation for necklaces. For instance, in the figure is the necklace

Figure 4.2 : An example of a necklace

(0,1,2,0) or 0120, which can be equivalently written as 1200, 2001, or as 0012.

Lemma 78. Suppose B is a maximal block of N. Then,

1. Pearls adjacent to B are labelled 0.

2. |B|=(B).

Proof. Let’s analyze the pearls adjacents to the maximal block B in the necklace N.

1. Let’s say the pearl P after B has a label > 1. That is, BP is a string of pearls, where

B is a maximal block and P > 1.

Then,

BP|=|B|+|P| > {(B) + 1 = {(BP).

Hence BP is a block which contains B. This contradicts the maximality of B. Reversing
the orientation proves the statement for the pearl preceeding the maximal block B. So,

any pearl next to B is labelled 0.
2. Assume that |B| > /(B).

We proved that a pearl P adjacent to B is labelled 0. (There must be such a pearl,
otherwise |B| > ¢(B) > n+1).

Say P follows B. Then BP is a block: Because |B| > ¢(B) + 1;
|BP| = |B|+|P| = |B| > ¢(B)+1 = {(BP).

Once again, this contradicts the maximality of B. Therefore for any maximal block B

is stacked by 0’s before and after and |B| = ¢(B). O
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Being a poset, the set of blocks of the necklace N must have maximal blocks. In fact,

Lemma 79. A necklace N contains a unique maximal block B, where |B| = {(B) = n.

Proof. Lemma 78 implies that the necklace N consists of (possibly several) maximal

blocks By, ..., B,, separated by strings of zeros (Figure 4.3).

—Bi—0—..—
/O 1—0 0

. \B
/. 2\
N=0 0
I
B, !
X .
[ R S 0/

Figure 4.3 : The necklace N depicted in two different, yet equivalent forms

Note that

 Sum of all pearls = |B||+ ...+ |Bu| = n,

e Number of pearls =¥¢(By)+...+4¢(By)+ _m 6 =n+1.

for m zeros

Therefore,
n+1=4B)+...+L(Bp)+m.
Because blocks By, ..., B, are maximal,
n+1=|Bi|+..4+|By| +m=n+m.
If follows that m = 1, i.e. the necklace N contains a unique maximal block B, where

B = ((B) = n. O

Notice that the maximal block of a necklace is an element of the set

n J
V(n) = {(v,-) eN": Zvi:nand Zviijorallj: 1,...,n}.

i=1 i=1
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A direct consequence of the previous lemma is

Theorem 80. The following map is a bijection:

¢:V(n) —U(n)/{s)

Necklaces

B
The necklace < >
0

Theorem 81 (Conjecture 1.1 in [5]). For a positive integer n and an integer r, the

B

A direct corollary of the bijection is

generating functions u(n,r) and v(n) coincide.
Proof. ForvinV(n),letu= ¢(v). Then, (") = ("). By Theorem 80 and Corollary 76,

vimy= Y W= ¥ W= Y 40 =unnr.

veV (n) uel(n)/(s) uel(n,r)
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S. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we study to two problems from algebraic combinatorics. The first
problem, studied in Chapters 1-3, is to obtain a formula for the product of Jack
polynomials and power-sum symmetric polynomials in terms of Jack polynomials. In
this direction, we show that algorithm put forward by Sakamoto et al. calculates the
expansion coefficients correctly for such a product in a number of special cases. Let
n be a nonnegative integer.More specifically, we are able to verify the said algorithm

produces the coefficients for the following types of products:

e Jupr where U is arbitrary and k = 1,2.

e Jupi where y = 1" and k = 1.

e Jupi where y =nand k=1,2,3,4.

* Jupi where i = n and k is an arbitrary positive integer.
* Jupi where 4 = m X n rectangular diagram and k = 2.

* The coefficient of J; in the product J, p; where A/ is a column of k boxes and

A, W,k are arbitrary.

* The coefficient of J, in the product J, py where A /1 is a row of n boxes and A, i1,k

are arbitrary.

In Chapter 4, we prove a conjecture by Aker and Can [5] which claims the equality
of two generating functions. This is done by constructing a bijection between the

underlying sets of the generating functions.

Sakamoto et al. study the action of Virasoro operators L, on the Fock space, namely on
the Jack polynomials. An algorithm to calculate the matrices of a Virasoro operators
in Jack basis is given. One possible direction to pursue is to prove the algorithm in this

more general context. One benefit of this context is that once the action of Virasoro
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operators L and L, is known, the effect of all Virasoro operators L, with n > 3 can be
constructed using the commutation relations:
c
(L, Ly) = (m—n) Ly + ﬁ< 3 m)ém+n,0,

where c is central charge. Here, m and n are arbitrary integers.
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